How to fix a broken motor in car

ng fees, taxes, and insurance,5 are weighed against the cost of the alternatives, and the value of the benefits ? perceived and real ? of vehicle usage. The benefits may include on-demand transportation, mobility, independence and

Dodane: 13-09-2016 08:59
How to fix a broken motor in car best oil for Ford

Using car - about Costs and benefits

The costs of car usage, which may include the cost of: acquiring the vehicle, repairs and auto maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance,5 are weighed against the cost of the alternatives, and the value of the benefits ? perceived and real ? of vehicle usage. The benefits may include on-demand transportation, mobility, independence and convenience.7 During the 1920s, cars had another benefit: "couples finally had a way to head off on unchaperoned dates, plus they had a private space to snuggle up close at the end of the night."48

Similarly the costs to society of encompassing car use, which may include those of: maintaining roads, land use, air pollution, road congestion, public health, health care, and of disposing of the vehicle at the end of its life, can be balanced against the value of the benefits to society that car use generates. The societal benefits may include: economy benefits, such as job and wealth creation, of car production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability for humans to move flexibly from place to place has far-reaching implications for the nature of societies.8

Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use


Cylinder configuration

Cylinder configuration

Common cylinder configurations include the straight or inline configuration, the more compact V configuration, and the wider but smoother flat or boxer configuration. Aircraft engines can also adopt a radial configuration, which allows more effective cooling. More unusual configurations such as the H, U, X, and W have also been used.

Multiple cylinder engines have their valve train and crankshaft configured so that pistons are at different parts of their cycle. It is desirable to have the piston's cycles uniformly spaced (this is called even firing) especially in forced induction engines; this reduces torque pulsations21 and makes inline engines with more than 3 cylinders statically balanced in its primary forces. However, some engine configurations require odd firing to achieve better balance than what is possible with even firing. For instance, a 4-stroke I2 engine has better balance when the angle between the crankpins is 180° because the pistons move in opposite directions and inertial forces partially cancel, but this gives an odd firing pattern where one cylinder fires 180° of crankshaft rotation after the other, then no cylinder fires for 540°. With an even firing pattern the pistons would move in unison and the associated forces would add.

Multiple crankshaft configurations do not necessarily need a cylinder head at all because they can instead have a piston at each end of the cylinder called an opposed piston design. Because fuel inlets and outlets are positioned at opposed ends of the cylinder, one can achieve uniflow scavenging, which, as in the four-stroke engine is efficient over a wide range of engine speeds. Thermal efficiency is improved because of a lack of cylinder heads. This design was used in the Junkers Jumo 205 diesel aircraft engine, using two crankshafts at either end of a single bank of cylinders, and most remarkably in the Napier Deltic diesel engines. These used three crankshafts to serve three banks of double-ended cylinders arranged in an equilateral triangle with the crankshafts at the corners. It was also used in single-bank locomotive engines, and is still used in marine propulsion engines and marine auxiliary generators.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine


The defining characteristic

2-stroke engines
Main article: 2-stroke engine

The defining characteristic of this kind of engine is that each piston completes a cycle every crankshaft revolution. The 4 processes of intake, compression, power and exhaust take place in only 2 strokes so that it is not possible to dedicate a stroke exclusively for each of them. Starting at TDC the cycle consist of:

Power: While the piston is descending the combustion gases perform work on it?as in a 4-stroke engine?. The same thermodynamic considerations about the expansion apply.
Scavenging: Around 75° of crankshaft rotation before BDC the exhaust valve or port opens, and blowdown occurs. Shortly thereafter the intake valve or transfer port opens. The incoming charge displaces the remaining combustion gases to the exhaust system and a part of the charge may enter the exhaust system as well. The piston reaches BDC and reverses direction. After the piston has traveled a short distance upwards into the cylinder the exhaust valve or port closes; shortly the intake valve or transfer port closes as well.
Compression: With both intake and exhaust closed the piston continues moving upwards compressing the charge and performing a work on it. As in the case of a 4-stroke engine, ignition starts just before the piston reaches TDC and the same consideration on the thermodynamics of the compression on the charge.

While a 4-stroke engine uses the piston as a positive displacement pump to accomplish scavenging taking 2 of the 4 strokes, a 2-stroke engine uses the last part of the power stroke and the first part of the compression stroke for combined intake and exhaust. The work required to displace the charge and exhaust gases comes from either the crankcase or a separate blower. For scavenging, expulsion of burned gas and entry of fresh mix, two main approaches are described: Loop scavenging, and Uniflow scavenging, SAE news published in the 2010s that 'Loop Scavenging' is better under any circumstance than Uniflow Scavenging.6

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine